| Question Number | Answer |  | Mark |
| :---: | :---: | :---: | :---: |
| 1(a)(i) | $\begin{aligned} & \text { Use of } v^{2}=u^{2}+2 a s \\ & a=2.9\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$ <br> Example of calculation $\begin{aligned} & a=\frac{\left(15 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}-\left(0 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}}{2 \times 39 \mathrm{~m}} \\ & a=2.88 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$ | $\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$ | 2 |
| 1(a)(ii) | Use of $F=m a$ to find $a$ or $F$ <br> Maximum $a=3.2 \mathrm{~m} \mathrm{~s}^{-2}$ <br> Or Force in (a)(i) $F=580 \mathrm{~N}$ (or 600 N ) <br> ( $3.2 \mathrm{~m} \mathrm{~s}^{-2}$ is the maximum acceleration because) the box must have the same acceleration as the lorry <br> Example of calculation <br> $a=630 \mathrm{~N} / 200 \mathrm{~kg}$ <br> $a=3.15 \mathrm{~m} \mathrm{~s}^{-2}$ | (1) <br> (1) <br> (1) | 3 |
| 1(b)(i) | $\begin{aligned} & W_{\text {parallel }}=W \sin \theta \\ & W_{\text {perpendicular }}=W \cos \theta \end{aligned}$ <br> (Accept $m g, 200 g$ or 1962 for $W$ ) | $\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$ | 2 |
| 1(b)(ii) | $F=W \sin \theta$ Or $F=W_{\text {parallel }}$ Or $R=W \cos \theta$ Or $R=W_{\text {perpendicular }}$ <br> Substitute $F=0.32 R$ into candidate's equation for $F$ or $R$ <br> Use of $\sin \theta / \cos \theta=\tan \theta$ $\theta=18^{\circ}$ | (1) <br> (1) <br> (1) <br> (1) | 4 |
|  | Total for question |  | 11 |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 2(a)(i) | ```State or show \(E_{p} \rightarrow E_{k}\) \(m g h=1 / 2 m v^{2}\) Or \(g h=1 / 2 v^{2}\) Use of \(m g h=1 / 2 m v^{2}\) Or \(g h=1 / 2 v^{2}\) \[ \begin{equation*} v=3.4\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \text { [no ue] } \tag{1} \end{equation*} \] \\ Calculation using \(v^{2}=u^{2}+2\) as scores 0 marks \\ Use of \(g=10 \mathrm{~N} \mathrm{~kg}^{-1}\) gives \(3.46 \mathrm{~m} \mathrm{~s}^{-1}\), \(3.5 \mathrm{~m} \mathrm{~s}^{-1}\), max 3 marks Do not credit bald answer (Candidates may calculate in steps using \(m=40 \mathrm{~kg}\), mark 2 becomes use of \(E_{p}=m g h\) and mark 3 becomes use of \(E_{k}=1 / 2 \mathrm{mv}^{2}\) ) \\ Example of calculation \[ \begin{aligned} & \hline E_{p}=E_{k} \\ & m g h=1 / 2 m v^{2} \\ & g h=1 / 2 v^{2} \\ & 9.81 \mathrm{~N} \mathrm{~kg}^{-1} \times 0.6 \mathrm{~m}=1 / 2 v^{2} \\ & v=3.4 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} \]``` | 4 |
| 2(a)(ii) | All $E_{p} \rightarrow E_{k} /$ no friction/ air resistance / no stretch of cable / u $=0 /$ no push at start / no energy transferred to other forms (No energy lost is not sufficient.) | 1 |
| 2(b)(i) | Label $2 x$ tension (T) parallel to cable and away from P only Label weight / pull of child / W / mg vertically downward <br> One correct and one incorrect scores 1 mark. Two correct and one incorrect scores 1 mark. Two incorrect scores 0. Ignore unlabelled arrows. | 2 |
| 2(b)(ii) | Use of $W=m g$ <br> Use of correct trigonometrical function ( $\mathrm{T} \sin 2=\mathrm{W} / 2$ ) (accept with missing factor 2, i.e. $\mathrm{T} \sin 2^{\circ}=\mathrm{W}$ )(do not accept tan) (accept $\left.\cos 88\right)(1)$ <br> Force $=5600$ (N) [no ue] <br> Accept calculation of 11200 N divided by 2 at the end for full marks only if accompanied by an explanation, such as 'there are two cables' $\begin{aligned} & \text { Example of calculation } \\ & W=m g \\ & W=40 \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1}=392 \mathrm{~N} \\ & T \sin 2^{\circ}=W / 2 \\ & T=392 \mathrm{~N} / 2 \times \sin 2^{\circ} \\ & T=5621 \mathrm{~N} \end{aligned}$ | 3 |
|  | Total for question | 10 |


| Question Number | Answer | Mark |
| :---: | :---: | :---: |
| 3(a) | Free body force diagram, arrows must begin at the point shown including: <br> weight vertical, (W, mg, gravitational force - not 'gravity') <br> friction and/ or air resistance parallel to slope upwards, (D, V, F) <br> normal contact force perpendicular to slope upwards. (ncf, N, R) <br> 3 correct forces $=2$ marks, 1 or 2 correct forces $=1$ mark, <br> Ignore arrows not coming from point <br> Each incorrect force (e.g. pull down slope) decreases the maximum possible number of creditable forces by one Ignore upthrust. | 2 |
| 3(b)(i) | Use of equations of motion sufficient to lead to answer $a=0.9\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ <br> Example of calculation $\begin{aligned} & s=u t+1 / 2 a t^{2} \\ & 11 \mathrm{~m}=1 / 2 \mathrm{ax}(4.9 \mathrm{~s})^{2} \\ & a=0.92 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$ | 2 |
| 3(b) ii) | $\begin{aligned} & \text { Use of } \mathrm{F}=\mathrm{ma} \\ & \mathrm{~F}=36 \text { to } 40 \mathrm{~N} \end{aligned}$ <br> Example of calculation $\begin{aligned} & \mathrm{F}=\mathrm{ma} \\ & \mathrm{~F}=40 \mathrm{~kg} \times 0.92 \mathrm{~m} \mathrm{~s}^{-2} \\ & \mathrm{~F}=37 \mathrm{~N} \end{aligned}$ | 2 |
| 3(c)(i) | ```Use of trigonometrical relationship (200 \(\left.\cos 20^{\circ}\right)\) to resolve force (1) \(\mathrm{F}=152 \mathrm{~N}\) Example of calculation Horizontal component of force \(=200 \mathrm{Nx} \cos 20^{\circ}\) \(=188 \mathrm{~N}\) \(37 \mathrm{~N}=188 \mathrm{~N}\) - resistive force resistive force \(=151 \mathrm{~N}\)``` | 2 |
| 3(c)(ii) | Use of work = force $\times$ distance <br> Use of work / time <br> Power $=420 \mathrm{~W}$ <br> For $P=F v$, Find (or use) ave velocity (1), use of $P=F v(1)$, correct answer (1) $\begin{aligned} & \text { Example of calculation } \\ & \hline \text { Work = force } \times \text { distance } \\ & =188 \mathrm{~N} \times 11 \mathrm{~m}=2070 \mathrm{~J} \\ & \text { Power }=\mathrm{work} / \text { time } \\ & =2070 \mathrm{~J} / 4.9 \mathrm{~s} \\ & =422 \mathrm{~W} \end{aligned}$ | 3 |
|  | Total for question | 11 |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| 4(a) | What is meant by Newton's first law. <br> reference to constant velocity OR rest and uniform motion in a <br> straight line (1) <br> reference to zero resultant force / unbalanced force (1) <br> (examples: $\Delta \mathrm{v}=0$ if $\Sigma \mathrm{F}=0 ; \Delta \mathrm{v}=0$ unless $\Sigma \mathrm{F} \neq 0$ ) | $\mathbf{2}$ |
| 4(b) (i) | State 2 ways in which the forces in the pair are identical. <br> 2 of magnitude, type of force, line of action, time of action (1) (1) | $\mathbf{2}$ |
| 4(b) <br> (ii) | State 2 ways in which the forces in the pair differ. <br> Opposite direction, act on different bodies (1) (1) | $\mathbf{2}$ |
| 4(b) <br> (iii) | Describe the force that Newton's third law identifies as the pair of <br> this force. <br> car exerts upward/ opposite force on Earth (the different points) (1) | $\mathbf{2}$ |
|  | gravitational and 12000 N/ equal (the identical points) (1) [no ue] <br> Total for question | $\mathbf{8}$ |

