Question Number	Answer	Mark
1(a)(i)	Use of $v^2 = u^2 + 2as$ (1) $a = 2.9 \text{ (m s}^{-2}$) (1)	2
	Example of calculation $a = \frac{(15 \text{ m s}^{-1})^2 - (0 \text{ m s}^{-1})^2}{2 \text{ m s}^{-1}}$	
	$a = 2.88 \text{ m s}^{-2}$	
1(a)(ii)	Use of $F = ma$ to find a or F (1)	
	Maximum $a = 3.2 \text{ m s}^{-1}$ Or Force in (a)(i) $F = 580 \text{ N}(\text{or } 600 \text{ N})$ (1)	
	$(3.2 \text{ m s}^{-2} \text{ is the maximum acceleration because})$ the box must have the same acceleration as the lorry (1)	3
	Example of calculation a = 630N/200 kg $a = 3.15 \text{ m s}^{-2}$	
1(b)(i)	$W_{\text{parallel}} = W \sin \theta \tag{1}$ $W_{\text{perpendicular}} = W \cos \theta \tag{1}$	2
	(Accept <i>mg</i> , 200 <i>g</i> or 1962 for <i>W</i>)	
1(b)(ii)	$F = W \sin\theta \text{ Or } F = W_{\text{parallel}} \text{ Or } R = W \cos\theta \text{ Or } R = W_{\text{perpendicular}} $ (1)	
	Substitute $F = 0.32R$ into candidate's equation for F or R (1)	
	Use of $\sin\theta/\cos\theta = \tan\theta$ (1)	
	$\theta = 18^{\circ} \tag{1}$	4
	Total for question	11

Question	Answer	Mark
Number		
2(a)(i)	State or show $E_p \rightarrow E_k$ (1)	
	$mgh = \frac{1}{2} mv^2$ Or $gh = \frac{1}{2} v^2$ (1)	
	Use of $mgh = \frac{1}{2} mv^2$ Or $gh = \frac{1}{2} v^2$ (1)	
	$v = 3.4 \text{ (m s}^{-1}) \text{ [no ue]}$ (1)	4
	Calculation using $v^2 = u^2 + 2as$ scores 0 marks Use of $g = 10$ N kg ⁻¹ gives 3.46 m s ⁻¹ , 3.5 m s ⁻¹ , max 3 marks Do not credit bald answer (Candidates may calculate in steps using $m = 40$ kg, mark 2 becomes use of $E_p = mgh$ and mark 3 becomes use of $E_k = \frac{1}{2} mv^2$) Example of calculation $E_p = E_k$ $mgh = \frac{1}{2} mv^2$ $gh = \frac{1}{2} v^2$ 9.81 N kg ⁻¹ x 0.6 m = $\frac{1}{2} v^2$	
	$v = 3.4 \text{ m s}^{-1}$	
2(a)(ii)	All $E_p \rightarrow E_k$ / no friction/air resistance / no stretch of cable / $u = 0$ / no push at start / no energy transferred to other forms (1) (No energy lost is not sufficient.)	1
2(b)(i)	Label 2 x tension (7) parallel to cable and away from P only(1)Label weight / pull of child / W / mg vertically downward(1)	2
	One correct and one incorrect scores 1 mark. Two correct and one incorrect scores 1 mark. Two incorrect scores 0. Ignore unlabelled arrows.	
2(b)(ii)	Use of $W = mg$ (1) Use of correct trigonometrical function (T sin 2 = W/2)(accept with missing factor 2, i.e. T sin 2° = W)(do not accept tan) (accept cos 88)(1) Force = 5600 (N) [no ue] (1) Accept calculation of 11 200 N divided by 2 at the end for full marks only if accompanied by an explanation, such as 'there are two cables'	3
	Example of calculation W = mg $W = 40 \text{ kg x } 9.81 \text{ N kg}^{-1} = 392 \text{ N}$ $T \sin 2^\circ = W/2$ $T = 392 \text{ N} / 2 \text{ x sin } 2^\circ$ T = 5621 N	
	Total for question	10

Question	Answer	Mark
Number		
3 (a)	Free body force diagram, arrows must begin at the point shown -	
	Including:	
	friction and/or air resistance parallel to slope upwards (D_V_E)	
	normal contact force perpendicular to slope upwards (ncf. N. P)	2
	3 correct forces = 2 marks 1 or 2 correct forces = 1 mark	2
	Ignore arrows not coming from point	
	Each incorrect force (e.g. pull down slope) decreases the maximum	
	possible number of creditable forces by one	
	Ignore upthrust.	
3(b)(i)	Use of equations of motion sufficient to lead to answer (1)	
	$a = 0.9 ({\rm m s}^{-2})$ (1)	2
	Example of calculation	
	$s = ut + \frac{1}{2} at^2$	
	$11 \text{ m} = \frac{1}{2} \text{ a x } (4.9 \text{ s})^2$	
2(1) ::)	$a = 0.92 \text{ m s}^2$ (1)	
3(D) II)	Use of $F = ma$ (1)	2
	$F = 30 \ 10 \ 40 \ N$ (1)	2
	Example of calculation	
	F = ma	
	$F = 40 \text{ kg x } 0.92 \text{ m s}^{-2}$	
	F = 37 N	
3(c)(i)	Use of trigonometrical relationship (200 cos 20°) to resolve force (1)	
	F = 152 N (1)	2
	Example of calculation	
	= 100 N	
	= 100 N 37 N - 188 N - resistive force	
	resistive force = 151 N	
3(c)(ii)	Use of work = force x distance (1)	
	Use of work / time (1)	
	Power = 420 W (1)	3
	For $P = Fv$, Find (or use) ave velocity (1), use of $P = Fv$ (1), correct	
	answer (1)	
	Example of calculation	
	Work = force x distance	
	$= 188 \text{ N} \times 11 \text{ m} = 2070 \text{ J}$	
	Power = work / time	
	= 2070 J / 4.9 s	
	= 422 W	
	Total for question	11

Question	Answer	Mark
Number		
4 (a)	What is meant by Newton's first law.	
	reference to constant velocity OR rest and uniform motion in a	
	straight line (1)	2
	reference to zero resultant force / unbalanced force (1)	
	(examples: $\Delta v = 0$ if $\Sigma F = 0$; $\Delta v = 0$ unless $\Sigma F \neq 0$)	
4(b) (i)	State 2 ways in which the forces in the pair are identical.	
	2 of magnitude, type of force, line of action, time of action (1) (1)	2
4(b)	State 2 ways in which the forces in the pair differ.	
(ii)		
	Opposite direction, act on different bodies (1) (1)	2
4(b)	Describe the force that Newton's third law identifies as the pair of	
(iii)	this force.	
	car exerts upward/opposite force on Earth (the different points) (1)	2
	gravitational and 12 000 N/equal (the identical points) (1) [no ue]	
	Total for question	8